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SUMMARY

Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based
Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix com-
posites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve
reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and
may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reus-
able and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life
prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/
SiC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach
to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due
to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.
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INTRODUCTION

Current state-of-the art CMC life prediction methodologies embodied in NASALife (ref. 1) and similar codes
are based on empirical formulations. In general, these have to be calibrated using experimental data. A shortcoming
of these approaches is that any kind of changes in fiber architecture, constituent volume ratios, or other variables
make the material system completely “new.” This requires that the empirical relations be recalibrated by extensive
additional experimental testing. Much of this additional cost and time can be reduced if the analytical models are
based on micromechanics. Once calibrated for a specific CMC system, the predictive capability of the model can
then be utilized without additional calibration. NASALife was developed under the Enabling Propulsion Materials
Project of the High Speed Research Program. Development of these codes has focused on material systems that are
markedly different from carbon fiber reinforced silicon carbide. These approaches are lacking because they are not
physics-based for accurate prediction of damage due to fatigue and fracture loading conditions. They also do not
account for environmental effects due to water vapor attack of silica oxide scales and carbon oxidation, which are
expected to be major factors in the application of C/SiC to space propulsion systems. Thus, current methods, and the
underlying empirical equations upon which they are based, are inadequate for predicting the reusable life of C/SiC
space propulsion hardware. The approach outlined in this paper is designed to resolve these shortcomings.

APPROACH AND STATUS

The overall effort focuses on providing a robust life prediction methodology that will allow confident determi-
nation of the reusable life capability of C/SiC space propulsion hardware (fig. 1). For the reasons outlined in
figure 2, standard C/SiC (T-300 fibers, SiC seal coat) from Honeywell Advanced Composites, Inc. was chosen as
the baseline material for this study. This will be accomplished by enhancing NASALife to capture the damage and
degradation mechanisms associated with static and cyclic thermal and mechanical loading of C/SiC components in a
high temperature, high pressure, steam containing environment (figs. 3 and 4). Also, approaches for life extension
will be sought.

The reaction of silica scales with water vapor is the most straightforward aspect of the environmental attack
problem to characterize and model because stress state interactions are insignificant. Current state of the art consists
of both experimental data and a model for SiC and Si3N4 recession due to formation of volatile silicon hydroxides in
combustion conditions typical of aircraft engines (figs. 5 and 6) (ref. 2). The model predicts material recession rates
as a function of water vapor partial pressure, total pressure, gas velocity, and material temperature. In this task the
model is being extended to pressures, gas chemistries, gas velocities, and material temperatures typical of the rocket
engine environment (figs. 7 and 8). High pressure, low velocity tests will be run upstream of the nozzle throat at
various H2/O2 mixture ratios. Atmospheric pressure, high velocity tests will be run at various mixture ratios down-
stream of the throat.

The second aspect of the environmental attack problem arises because C/SiC composites have a microcracked
SiC matrix in the as-produced condition (fig. 9). As a result, the carbon coating on the fibers and the carbon fibers
themselves are subject to oxidation attack when the cracks are opened (refs. 3 and 4). This degradation mechanism
occurs at temperatures below the composite fabrication temperature under zero stress conditions (fig. 10), and at all
elevated temperatures sufficient for oxidation of the fibers when stress is applied (fig. 11). Since oxidizing condi-
tions are expected to be present in the service environment of most C/SiC components, prediction of oxidation
attack is a key ingredient of the life prediction model. A more thorough understanding of the effects of environment,
temperature, and stress on the degradation of carbon fibers is being developed so that material limitations can be
better identified and methods of improving oxidation resistance can be addressed. The development of a fiber oxida-
tion model is being pursued (figs. 12 and 13). The model is physics and experimentally based. It incorporates such
variables as reaction rate, diffusion coefficient, temperature, partial pressure, and environment. It tracks the reces-
sion of an array of fibers in a cracked matrix so that the oxidation kinetics involved in carbon fiber degradation can
be studied. Stress rupture tests conducted will aid in the development of the model.

Physics based, probabilistic lifting models are being pursued. The models will address issues inherently related
to composite materials—stochastic characterization of strength, life, and orthotropic material response. Experimen-
tal stress rupture and fatigue testing will be carried out in appropriate environments in support of model calibration
and validation. Additional testing will be done for the characterization of the mechanical behavior of advanced
ceramic composites proposed for use in space propulsion engine components, such as nozzle structures and turbo-
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machinery. The lifting models developed will be implemented in NASALife. A parallel effort for a micro-
mechanics (fiber/coating/matrix) based approach to predict stiffness, strength, and life at the coupon level is also
being pursued (refs. 5 to 7). Current on-going research tasks have led to a library of computer codes (CEMCAN/
WCMC, PCGINA) developed specifically for the design of CMC. These computer codes will be adapted to C/SiC to
provide state of the art design tools.

Lifting schemes, such as those contained within NASALife and currently employed for CMCs, are adapted
from models originally developed for design with metals. These traditional models are comprised of modified
Miner’s rules, rain-flow calculations, empirical knockdown factors, safety factors, etc. Under the current research
program, a probabilistic residual strength model is being pursued. Residual strength is taken as the damage metric
for stress rupture and mechanical fatigue life models. Initial static strength, intermediate residual strength, and time
or cycles to failure are all treated as random variables (see fig. 14). In addition, efforts are underway to develop
physics based models at the fiber/matrix level for life determination, and environmental effects. In the mean time,
the residual strength model utilizes empirical relationships where needed, but is open to modification and incorpora-
tion of new models, such as micromechanical models and models for environmental degradation, as they become
available.

The test matrix for tensile, creep-rupture, and fatigue testing was formulated to satisfy several requirements: (1)
Calibration and verification of the probabilistic residual strength model. (2) Assessment of usable service conditions
(i.e., temperature, stress, and environment) for C/SiC. (3) To determine the effect of alternative fiber architecture on
material behavior and model capability (fig. 15). The initial stress-rupture data generated are shown in figure 16.
Tests were conducted in six different environments, using a temperature of 1200 °C and stress of 83 MPa (10 ksi)
for all tests. Similar lives were obtained for specimens tested in air and environments containing steam, while
specimens tested in vacuum did not fail. These data are consistent with the SiC recession (fig. 5), TGA (fig. 10),
and stressed oxidation data (fig. 11), indicating that the environment plays a key role in the high temperature
performance of C/SiC.

Methods to limit environmental attack by oxidation and reaction with water vapor are being developed. The
proposed work will explore three ways to protect the integrity of the C/SiC composite: (1) external barrier coatings,
(2) additives and pretreatment to promote oxide sealing of preexisting cracks and those that form in service, and
(3) interphase coatings to protect the carbon fiber from oxidation.

CONCLUDING REMARKS

Life prediction for C/SiC is a complex problem involving many interactive mechanisms. The plan outlined here
will analyze mechanisms in isolation as well as the interactions, develop mechanistic lifting models, understand the
importance of statistics in C/SiC behavior, and develop methods to extend C/SiC life.
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• Primary goal:
• Develop and verify a robust methodology for 
   confident determination of the reusable life 
   capability of C/SiC space propulsion hardware.

• Secondary goals:
• To ground the methodology with mechanism-based
   descriptions of mechanically and environmentally 
   induced damage.

• To expand the database for C/SiC.
• To identify methods for life enhancement.
• To directly support flight experiments which use
   CMC propulsion components. 

Figure 1.—Program objectives.
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   – Reproducible

   – Readily available

   – Realistic set of life
      

   – Controllable life

   – Of real interest

• Negative

   – Costly

Figure 2.—Standard ACI C/SiC chosen as model
   material.

limiting mechanisms

• Environmental
   – Surface recession due to moisture
   – Interface and fiber oxidation

• Mechanical
   – Strains due to thermal and mechanical loads
   – Cycling of loads (LCF, HCF)
   – Creep

Figure 3.—C/SiC life controlled by complex, 
   interactive mechanisms.

Figure 4.—C/SiC life prediction task organization.
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Figure 5.—Pressure dependence of SiC recession
   in combustion environments.
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Figure 6.—SiC volatilization mechanism in fuel-lean
   combustion environments.

SiC + 3H2O = SiO2 + CO + 3H2
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 • Chemical model for Si(OH)4:
k1~ exp(–57 kJ/mol/RT) P1.50 v0.50

• Extend model for silica volatilization (SiC recession)
   to pressures, gas chemistries, gas velocities, and
   material temperatures typical of rocket engine
   environments.

• Verify with materials tests in a rocket engine
    environment.

Figure 7.—Steam environment model and data.
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• Surface cracking of CVI seal coating• Internal cracking contained with [90 ] plies and in 
   seal coating

Figure 9.—As-manufactured microstructure of ACI C/SiC (C/SiC has internal cracking due to fabrication).

Figure 10.—Oxidation of C/SiC coupons in a TGA.
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Figure 11.—Stressed oxidation of C/SiC.
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Figure 12.—Model development for prediction of C/SiC strength loss due to oxidation of carbon fiber.
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Figure 13.—Oxidation model development.

• Advance the development of a model that predicts
   degradation of an array of carbon fibers in a 
   cracked ceramic matrix.

• Determine the role that temperature, stress, and 
   environment play in the oxidation rate of carbon 
   fibers through experimentation (analysis of stress 
   rupture tests) and analysis in the model.

• Develop a correlation between composite 
   strength/failure and carbon consumption so the    
   model can be used to predict the life of the CMC 
   material under application conditions.

Figure 14.—Probabilistic model development for C/SiC.
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Figure 15.—Test matrix.
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(determine material behavior in steam). 
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• Fatigue tests - 60 per temperature.
20 tested to failure  (calibration).
20 stopped prior to failure and residual strength 

(verification).
20 to failure (verification). 

• Feature tests - specimens with holes, notches, etc.
(benchmark model predictive capability).

 • Fatigue or creep rupture of alternate fiber 
architecture (calibration). 

Figure 16.—Stress-rupture lives for [0/90] C/SiC (tests conducted at 1200 °C, 10 ksi).
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